Romantic Value
There are N farms(numbered from 1 to N) and M undirected roads each with a romantic value c(indicate how much Farmer John loves it). Now John stays in farm p and his little brother stay in farm q. John wants to first minimize the romantic value lost, then to destroy as few roads as possible. Help him to calculate the ratio of [sum of the remainder roads' value]/[the amount of removed roads](not necessary to maximisation this ratio) when he achieves his goal.
Input
The first line is a single integer T, indicate the number of testcases. Then follows T testcase. For each testcase, the first line contains four integers N M p q(you can assume p and q are unequal), then following M lines each contains three integer a b c which means there is an undirected road between farm a and farm b with romantic value c. (2<=N<=50, 0<=M<=1000, 1<=c<1000, 1<=p,q<=N)
Output
For each test case, print the ratio in a single line(keep two decimal places). If p and q exist no route at the start, then output "Inf".
Sample Input
14 5 1 41 2 11 3 12 4 23 4 22 3 1
Sample Output
2.50
Source
Author
1 #include2 using namespace std; 3 const int INF = ~0U>>2; 4 const int maxn = 100; 5 int head[maxn],gap[maxn],d[maxn],tot,S,T,n,m; 6 struct arc{ 7 int to,flow,next; 8 arc(int x = 0,int y = 0,int z = -1){ 9 to = x;10 flow = y;11 next = z;12 }13 }e[maxn*maxn];14 void add(int u,int v,int w){15 e[tot] = arc(v,w,head[u]);16 head[u] = tot++;17 e[tot] = arc(u,0,head[v]);18 head[v] = tot++;19 }20 int dfs(int u,int low){21 if(u == T) return low;22 int tmp = 0,minH = n - 1;23 for(int i = head[u]; ~i; i = e[i].next){24 if(e[i].flow){25 if(d[e[i].to] + 1 == d[u]){26 int a = dfs(e[i].to,min(low,e[i].flow));27 e[i].flow -= a;28 e[i^1].flow += a;29 tmp += a;30 low -= a;31 if(!low) break;32 if(d[S] >= n) return tmp;33 }34 if(e[i].flow) minH = min(minH,d[e[i].to]);35 }36 }37 if(!tmp){38 if(--gap[d[u]] == 0) d[S] = n;39 ++gap[d[u] = minH + 1];40 }41 return tmp;42 }43 int sap(int ret = 0){44 memset(d,0,sizeof d);45 memset(gap,0,sizeof gap);46 gap[S] = n;47 while(d[S] < n) ret += dfs(S,INF);48 return ret;49 }50 int main(){51 int kase,ret,sum,u,v,w;52 scanf("%d",&kase);53 while(kase--){54 scanf("%d%d%d%d",&n,&m,&S,&T);55 memset(head,-1,sizeof head);56 for(int i = tot = sum = 0; i < m; ++i){57 scanf("%d%d%d",&u,&v,&w);58 add(u,v,w*1234 + 1);59 add(v,u,w*1234 + 1);60 sum += w;61 }62 int ret = sap();63 if(ret == 0) puts("Inf");64 else printf("%.2f\n",double(sum - ret/1234)/(ret%1234));65 }66 return 0;67 }